

Melanie D. Spencer, PhD, MBA

Executive Director and Associate Professor Center for Outcomes Research and Evaluation Carolinas HealthCare System

Microbes dominate the human body

- You are half human and half microbe – the number of microbes are roughly the same as human cells
- Microbes colonize almost every body enviroment
- Each habitat on an individual has a different microbiome
- Human beings are a biosystem

1. Introduction to metagenomics

How do we know...

- who's there
- what they are doing
- why they are important

2. The role of the human gut microbiome

- What are functions of our bacterial symbionts?
- Where does the gut microbiome come from?
- How do the gut microbiome and nutrition interact to influence health?
- What happens when the microbiome is disrupted?

How do we know who's there?

Microbiome = community with many members Need a unique id for every member

Small subunit ribosomal RNA

Hypervariable Regions

How do we know who's there?

16S rRNA Gene: a bacterial barcode

Who's there

Prevotella

- Normal GI bacterium
- Also in mouth
- Some types cause infection

"Omics" methods for bacteria

- Genomics sequencing and assembling the entire genome of an organism
- Metagenomics genomics across microbiome to identify gene abundance across as proxy for function
- Metatranscriptomics actual gene activity identified from transcripts
- Proteomics characterization of the proteins produced by the microbiome
- Metabolomics and Metabonomics identification of bacterially-derived metabolites in host

2. The role of the human gut microbiome

- Why are gut microbes important?
- Where does the gut microbiome come from?
- How do the gut microbiome and nutrition interact to influence health?

Some gut microbiome functions

- Processing nutrients
- Synthesizing micronutrients
- Digesting the indigestible
- Harvesting energy
- Maintaining redox balance in the intestine
- Promoting intestinal health
- Tuning the developing immune system
- Directly inhibiting pathogens

Gut microbiome adapts and responds to host and external changes

Bacteria-mediated nutrients in homocysteine metabolism

Linus Pauling Institute

Nutrition/microbe interactions in the colon

Microbiome-produced butyrate provides the primary energy source for colonocytes.

Microbiota maintain NADH/NAD⁺ ratios and ATP levels in the colon.

Germ-free mice have greatly reduced colonocyte ATP levels.

TCA cycle enzymes (boxed) are regulated by gut microbes.

Enzymes downregulated in germfree mice are indicated (\downarrow).

Donohoe et al., Cell Met 2011

Diet, Microbiome and Gut Health

- Metabolites are generated from dietary fiber by gut bacteria
- Butyrate and niacin are ligands for G protein-coupled receptors on intestinal and immune cells
- Activated receptors trigger the production of agents that are protective and regulate the immune system
- Lack of dietary fiber affects Th1 and Th17 responses in autoimmune conditions

Jobin, *Immunity* 2014 Haghikia, *Immunity* 2016

Bacteria that produce short-chain fatty acids

Ramakrishna., J Gastro and Hep 2012

Acquiring a gut microbiome

Initial gut microbiome depends on delivery method

Restoration of Gut Microbiome

Inoculation of vaginal microbiome partially restores C-section baby gut microbiome

The role of the human gut microbiome: Conclusions

- Gut microbes and human hosts in functional symbiosis.
- Relationships among gut microbes, nutrition, the gastrointestinal tract, human genetics and other host factors are complex and often interdependent.
- They participate in human metabolism, synthesizing nutrients, such as tetrahydrofolate and vitamin B12, integral to metabolic processes.
- Gut microbes produce produce short-chain fatty acids, including butyrate which is the primary energy source for colonocytes and regulates β-oxidation and the TCA cycle in the colon.
- The gut microbiome is acquired both before and at birth and is initially different from the adult microbiome.
- The types of microbes that initially colonize an infant are affected by whether birth is vaginal or cesarean.

Diet, the gut microbiome and health Nutrition

How much does diet affect the microbiome?

15 Children in Florence, Italy

14 Children in Burkino Faso

De Filippo et al., PNAS 2010

Do different diets = different microbiota?

Florence, Italy (N=15)

- Western diet
- Low in fiber
- Righ in animal protein, sugar, starch and fat
- Processed foods
- Breast fed up to 1 year
- Calories:
 - 1-2 yr = 1069 kcal 2-6 yr = 1517 kcal

Burkino Faso (N=14)

- Traditional rural African diet
- Predominantly cereals, legumes and vegetables
- Low in fat, animal protein
- Rich in starch, fiber, plant polysaccharides
- Cultivated and harvested locally
- Breast-fed up to 2 years
- Calories:
 - 1-2 yr = 672 kcal
 - 2-6 yr = 996 kcal

Clustering of samples from BF and EU children

- Clusters generally separate by group
- Cluster between groups includes young, breast-fed children from both populations
- Similar microbial communities of young children on breast milk diet

Diet shapes who is there

Diet shapes what they do

De Filippo et al., PNAS 2010

Genetics & the gut microbiome in obesity

http://www.sciencedaily.com/imag es/2007/01/070129081348.jpg

Turnbaugh et al., Nature 2006

Determining cause and effect

50% ↑ Body Fat

28% ↑ Body Fat

Turnbaugh et al., Nature 2006

Determining cause and effect

Determining cause and effect

Low fat/high fiber

Human obese microbiome \implies mouse obesity

- Western-fed, obese human donor vs. low fat/high-fiber fed lean human donor
- Post-transplant low fat/high fiber diet in recipient mouse for 2 weeks
- Difference of 34%
- Microbiome profile and phenotype transmitted to next generation

Metabolic syndrome

- Increased waist circumference
- High triglycerides
- Low HDL
- High blood pressure
- High blood sugar

US Age-adjusted prevalence of 34%

Metabolic syndrome, host immunity and the gut microbiome

- TLR5 transmembrane protein highly expressed in intestinal mucosa that recognizes bacteria flagella
- Knock-outs: body mass 15% higher than WT littermates
- 60% elevated pro-inflamatory gene expression

Knock-outs = good metabolic syndrome model

Metabolic result of TLR5 knock-out

Vijay-Kumer et al., Science 2010

Potential mechanism = Microbiome

- Treated with Antibiotics
- Lowered bacterial load by 90%
- Correction of metabolic syndrome
 - Lowered glucose levels
 - Lowered food intake
 - Reduced fat pads

Microbiome mechanisms evidence

Donor

T5KO

Extracted Microbiome

Recipient

Microbiome transfer:

- Increased food intake
- Increased weight gain
- Increased fat pads
- Increased blood glucose
- Increased inflammatory cytokines

Diet, the gut microbiome and health: Conclusions

- The microbiota of human populations with different dietary patterns have adapted to their nutritional environments.
- Diet plays an important role in regulating the composition of the gut microbiome.
- Microbiome composition affects host characteristics, such as body weight.
- Genetics also plays a role in microbiome health effects.
- Microbiome transfer experiments demonstrate that genetically associated phenotypes, such as obesity and metabolic syndrome, are transmissible through the gut microbiome alone.

Antibiotics, Probiotics and the gut microbiome Nutrition

Other Factors

Early gut microbiome disruption

Early gut microbiome disruption

Microbiome recovers post Abx BUT Metabolic phenotype persists

Antibiotic studies in mice

Conclusions:

- Abx selection of microbiome maintained
- Microbiome change is causative
- Early life Abx exposure = metabolic changes
- Specific types of bacteria may be biomarkers

Early life antibiotic exposures - observational

Early life antibiotic exposures - observational

<u>Allergies¹</u> Milk (OR 1.78) Non-milk food (OR 1.65) Other (OR 3.07)

<u>Asthma</u> Maternal² (OR 1.21-1.72) Child – respiratory³ (OR 4.12)

- 1. Hirsch et al.; Clin Exp Allergy, 2017
- 2. Chu et al.; PLoS ONE, 2015
- 3. Ortqvist, et al.; The BMJ, 2014

Clostridium difficile

- A spore-forming, toxin-producing gut bacterium
- People can carry C. dif with no infection
- Infection produces fever, diarrhea, nausea
- Abx exposure prior to infection is key risk
- Easily transmitted person-to-person
- Antibiotic resistance is increasing

- Difficult to treat, especially Abx resistant strains
- Complications are serious but mortality is fairly low

Microbiome as Therapy

Clostridium difficile

Van Nood et al., NEJM 2013 Lee et al., JAMA 2016

The Evidence for Probiotics

- Probiotic development gold standard is doubleblind, placebo-controlled, randomized trials (RCTs)
- RCTs begun but need larger trials
- Generalizability versus personalization
- Effective and safe dose is not clear for everyone
- Which bacteria for which problems is complex

One proposed probiotic/micronutrient pathway

Identifying underlying probiotic mechanisms

Sugahara et al.; Scientific Reports, 2015

RCT: Impact of early-life intervention with bifidobacteria on the healthy infant fecal microbiota and metabolome

Breast-Fed 📭 Interventional Formula- and Breast-Fed F Interventional FormulaFed 📭 Placebo Formula- and Breast-Fed F Placebo Formula-Fed

Results:

1 month: Microbiome differences segregated by feeding group
 12 months: Formula fed converged, breast-fed segregated
 24 months: No discernable differences between groups

Bottom line: Individual differences larger than feeding differences

Bazanella et al.; Am J Clin Nutr, 2017

Human Probiotic Studies

Study Design	Торіс	# Subj.	Results
RCT, Placebo ¹	Gestational Diabetes Mellitus	60	 ↓ Oxidative Stress ↓ Inflammation Markers = Pregnancy Outcomes
RCT, Placebo ²	Rheumatoid Arthritis	60	No effect on serum lipids
Double-blind, Placebo, RCT ³	Alzheimer's	60	 ↑ Cognitive function ↑ Metabolic status ↓Markers

1. Badehnoosh et al.; J Matern Fetal Neonatal Med, 2017

2. Vaghef-Mehraba et al.; Health Promotion Perspectives, 2017

3. Akbari et al.; Frontiers in Aging Neuroscience, 2016

IOC Consensus Statement: Dietary Supplements and the High-Performance Athlete

Probiotics are live micro-organisms that, when administered orally for several weeks, can increase the numbers of beneficial bacteria in the gut. These have been associated with a range of potential benefits to gut health, as well as modulation of immune function.

- Moderate support in athletes with daily dose of ~10¹⁰ live bacteria
- Cochrane review of 12 studies (n=3720) shows ~50% decrease in URS incidence and ~2 day, shortening of URS; minor side effects.
- More evidence is required supporting efficacy to reduce gastrointestinal distress and infection, for example, in a travelling athlete.

Antibiotics, probiotics and the gut microbiome: Conclusions

- Antibiotics in gestation and early infancy appear to have long-term effects on microbiome composition and evidence suggests effects on body weight, allergies and asthma.
- Effects of early antibiotic treatment on the microbiome continue into adulthood and are transmissible through the microbiome.
- Antibiotic exposure can reduce the microbiome's ability to fight bad bacteria, resulting in opportunistic infections such as Clostridium difficile.
- Fecal transplant is a new and very effective treatment for people with Clostridium difficile infections and may help for other conditions.
- Mouse systems are valuable to establish probiotic mechanisms.
- Placebo-controlled randomized clinical trials in humans have begun to document evidence of probiotic benefits but sample sizes need to be larger to understand effects and which bacteria provide the benefit.